

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Reactions of Barbituric and 2-Thiobarbituric Acid Derivatives with Acetone

Funda Oğuz^a; İlknur Doğan^a

^a Department of Chemistry, Boğaziçi University, Bebek, Istanbul, Turkey

To cite this Article Oğuz, Funda and Doğan, İlknur(1998) 'Reactions of Barbituric and 2-Thiobarbituric Acid Derivatives with Acetone', *Spectroscopy Letters*, 31: 2, 469 — 482

To link to this Article: DOI: 10.1080/00387019808003268

URL: <http://dx.doi.org/10.1080/00387019808003268>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

REACTIONS OF BARBITURIC AND 2-THIOBARBITURIC ACID DERIVATIVES WITH ACETONE

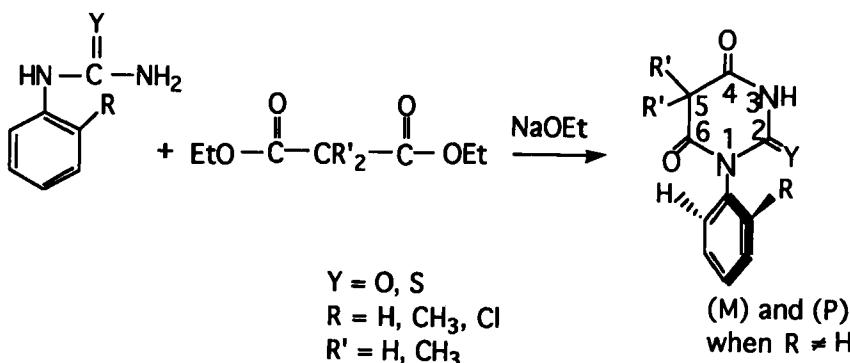
Keywords: 1-Arylbarbituric acids, 1-(o-Aryl)-2-thiobarbituric acids, active methylene reactions

Funda Oğuz and İlknur Doğan*

Boğaziçi University, Department of Chemistry, Bebek 80815,
İstanbul/Turkey

ABSTRACT

Barbituric and 2-thiobarbituric acid derivatives carrying a 1-N-aryl substituent were found to react with acetone at the 5-position of the heteroring. Acetone adducts were identified by their ^{13}C NMR and mass spectra.

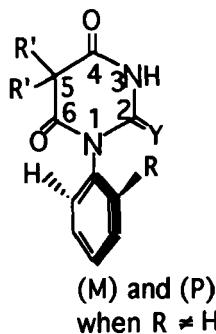

INTRODUCTION

Our interest in the heterocyclic analogues of sterically hindered chiral biaryls^{1,2,3} encouraged us to synthesize 1-*o*-arylbarbituric and -2-thiobarbituric acid derivatives (scheme 1) in which resolution and racemization experiments together with NMR studies could be carried out⁴. During the NMR studies on these compounds we found out an active methylene reaction of the barbituric and 2-thiobarbituric acids with acetone-d₆ at the position 5 of the heteroring at room temperature. We identified the acetone adducts using ¹³C NMR and mass spectroscopy. Here we report the adducts formed and propose a mechanism for their formation.

RESULTS AND DISCUSSION

Novel⁵ barbituric and 2-thiobarbituric acid derivatives have been synthesized (table 1), their purities were checked and compounds have been fully characterised⁶. 1-Arylbarbituric acids and 1-aryl-2-thiobarbituric acids were synthesized by the condensation reaction of phenylureas or phenylthioureas and diethylmalonate as shown in scheme 1.

The 200 MHz ¹H NMR spectrum of N-(*o*-tolyl)barbituric acid (figure 1) taken in hexadeuteroacetone gave peaks at δ =2.15 ppm (3H, s) δ_A = 3.87 ppm δ_B = 3.78 ppm (2H, AB) δ =7.35 - 7.16 (4 H, m). The AB system was observed for the 5-CH₂ protons of the heterocyclic ring because they are diastereotopic due to the axial chirality² of the



Scheme 1. Synthesis of the barbituric and thiobarbituric acids studied.

molecule. When the spectrum of the same compound i.e. 1-(*o*-tolyl)barbituric acid was taken after being kept for 2 days at 23°C in hexadeuteroacetone, the intensity of the CH₂ signals⁹ was found to decrease (figure 2), and the decrease was found to continue with time (figure 2). After an 8 days of reaction time at 23°C, the peak of the CH₂ protons almost disappeared (figure 2). However when the solvent was evaporated after this reaction time and ¹H NMR spectrum of the remaining compound was taken in trifluoroacetic acid, it was observed that the CH₂ peak reappeared with the original integral ratio. It was apparent that 1-(*o*-tolyl)barbituric acid reacted slowly with hexadeuteroacetone.

The other derivatives studied here (table 1) reacted faster, within approximately 4 hours with

TABLE 1
The synthesized 1-(*o*-aryl)barbituric and 2-thiobarbituric acids

compound no	Aryl group	Y	R'	m.p. (°C)
1	phenyl ⁷	O	H	259-261
2	<i>o</i> -tolyl	O	H	234-235
3	<i>o</i> -chlorophenyl ⁸	O	H	224.5
4	<i>o</i> -tolyl	S	H	137
5	<i>o</i> -chlorophenyl	S	H	164
6	<i>o</i> -tolyl	O	CH ₃	148-150

⁷see reference 7

⁸see reference 8

hexadeutoroacetone except for 5,5-dimethyl-1-(*o*-tolyl)barbituric acid which did not react at all.

To see the effect of water on the reaction, phenylbarbituric acid was refluxed with water and acetone mixture (approximately 3:1, just enough acetone was added to solubilize the compound in water). A slower reaction was observed in water-acetone mixture and any reaction with water itself was not seen.

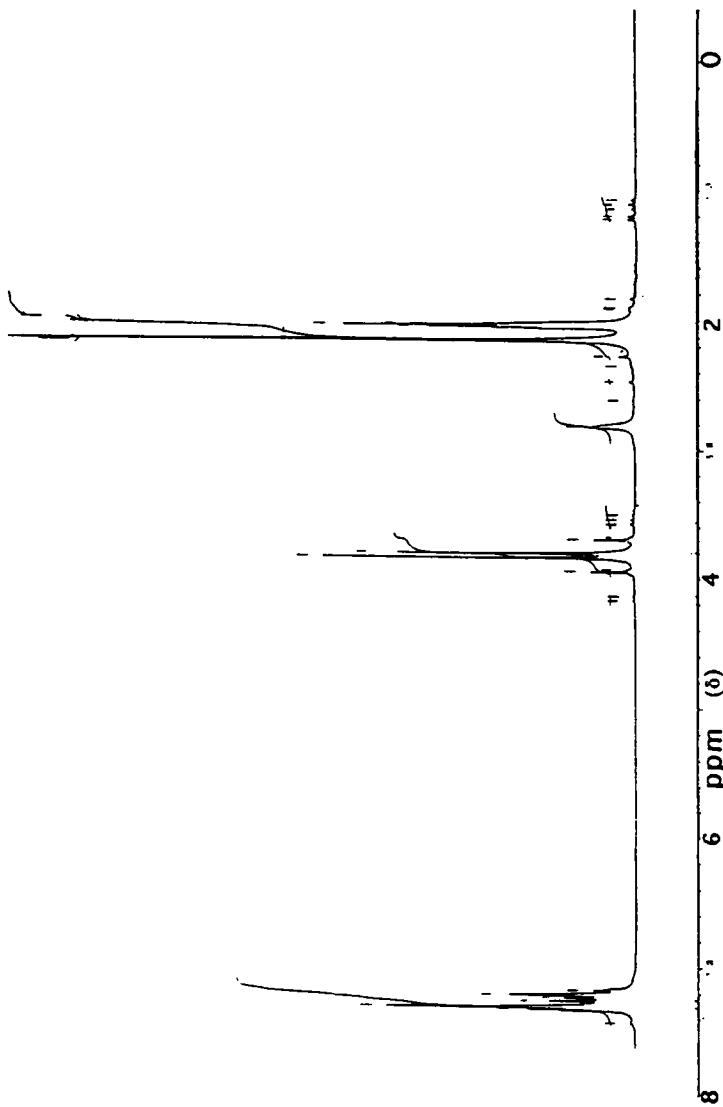


Fig. 1. The 200 MHz ^1H NMR spectrum of 1-(*o*-tolyl)barbituric acid in hexadeuteroacetone at 23°C.

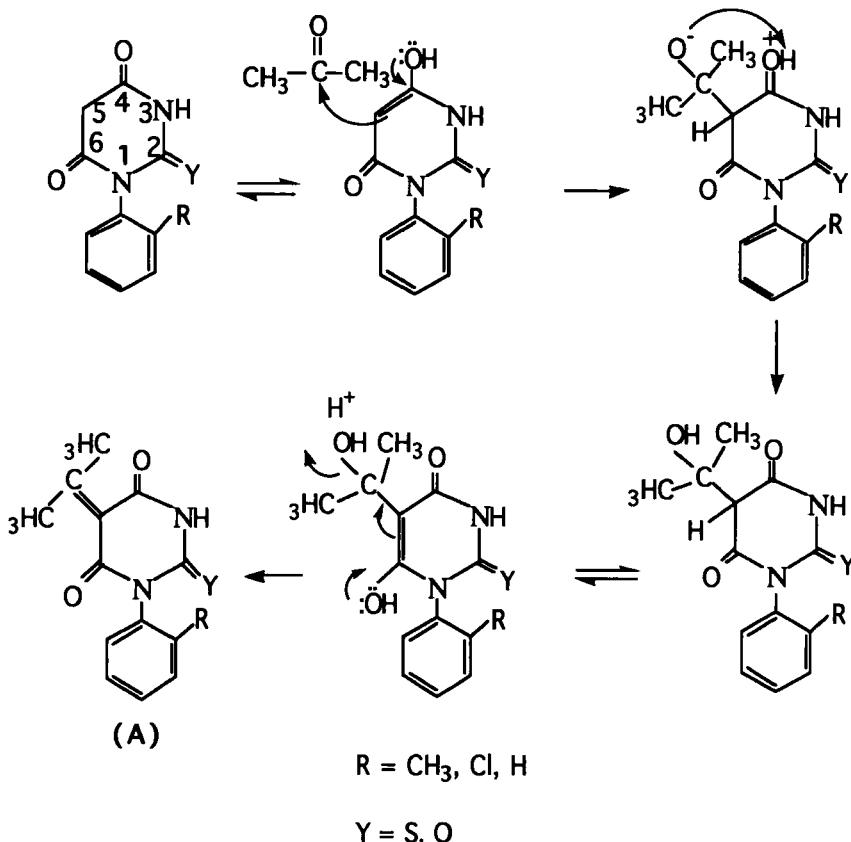
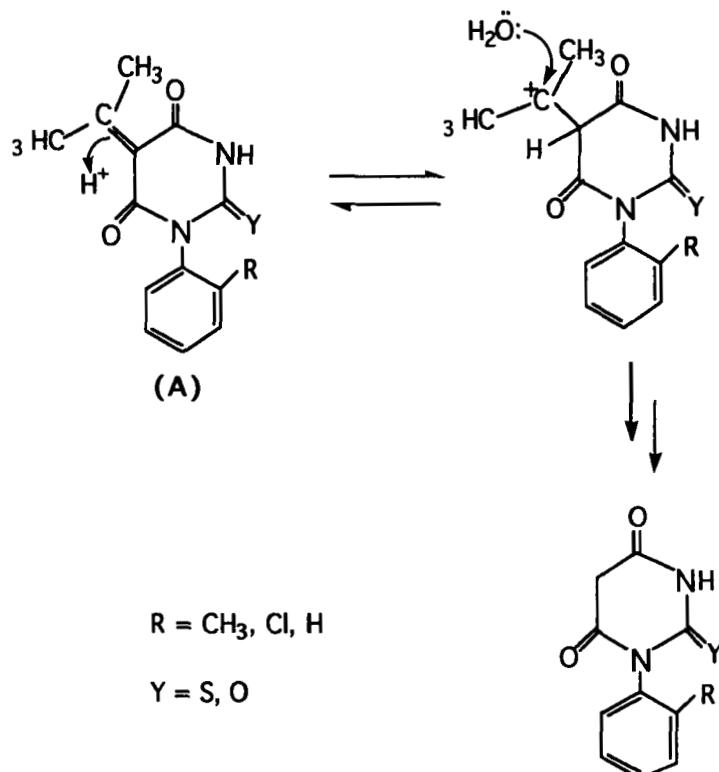


Fig.2. The 60 MHz ^1H NMR spectra of 1-(o-tolyl)barbituric acid in hexadeuteroacetone at 23°C taken after a) 2 days, b) 4 days, c) 8 days.

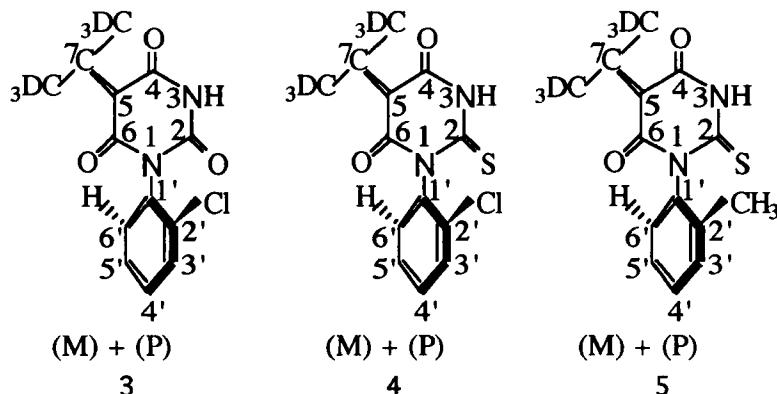
From these results it was proposed that acetone reacts with the barbituric and thiobarbituric acids at C-5 over the enol form to form an adduct, in the same way as to be expected from an active methylene compound. This adduct is reversibly converted to the barbituric acid in acidic medium. The proposed mechanism for the formation of the adduct (A) and its conversion back to the barbituric acid are shown in schemes 2 and 3 respectively.


The 5,5-dimethyl-1-(*o*-tolyl)barbituric acid did not give any reaction under the same conditions because it does not have an enolizable proton at C-5 of the heteroring. Similar adducts were proposed to be formed¹⁰ from the reaction of 2-thiobarbituric acid with aldehydes. In this study we show that not only 2-thiobarbituric acids but barbituric acid derivatives as well react with a carbonyl compound. In a study about the tautomerism of barbituric and thiobarbituric acid derivatives¹¹ a reaction of acetone with the compounds at the thiocarbonyl bond was proposed. Such a reaction was not observed in our case probably due to the steric hindrance brought by the *o*-aryl substituents.

The ¹³C NMR spectra of compounds 3,4 and 5 taken in hexadeuteroacetone were found to be different than the ¹³C NMR spectrum of 5,5-dimethyl-1-(*o*-tolyl)barbituric acid which did not react with acetone. The C-5 carbon of

Scheme 2. Reaction of acetone with the barbituric and thiobarbituric acids studied to form the acetone adduct(A).

the heteroring which resonated at 48 ppm for example did not appear in the spectra of the former compounds. Instead additional peaks (small intensity) around 130 ppm were found. The ^{13}C NMR spectra ascribed to the acetone-d₆ adducts are given in table 2. The CD₃ carbon



Scheme 3. Conversion of the acetone adduct (A) back to barbituric and thiobarbituric acids.

signals of the adducts overlaid with the acetone-d6 signals, therefore they could not be observed.

The mass spectra of the acetone adducts of 1-phenylbarbituric and 1-(*o*-tolyl)barbituric acids (figures 3 and 4 respectively) showed molecular peaks of *m/e* 244 and 258 respectively. These peaks may be assigned to the structures 1' and 2' (Scheme 4) which may be considered

TABLE 2
 ^{13}C NMR chemical shifts of acetone adducts, 3, 4, and 5
 in hexadeuteroacetone

Compound			
no of C atom	3	4	5
2	151.2	a	a
4, 6	164.3; 166.3	a	a
5 ^b , 7	131.10,	131.2; 132.0	129.50; 129.73
1'	133.74	a	a
2'	132.32	a	a
3'	132.05	132.28	131.29
4'	130.59	130.50	129.36
5'	131.32	130.95	129.95
6'	128.65	128.62	127.47
2'-CH ₃	-	-	17.47

^a It could not be observed due to longer relaxation time or overlapping.

b A small peak has been observed at 40.44 ppm, and has been ascribed to the C-5 carbon of the unreacted compound.

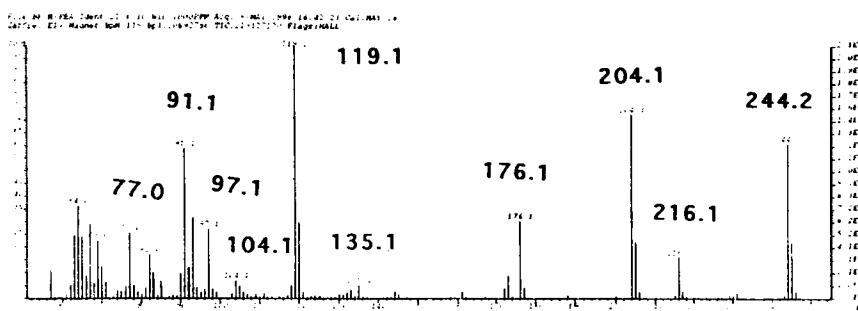


Fig.3. Mass spectrum of 1-phenylbarbituric acid.

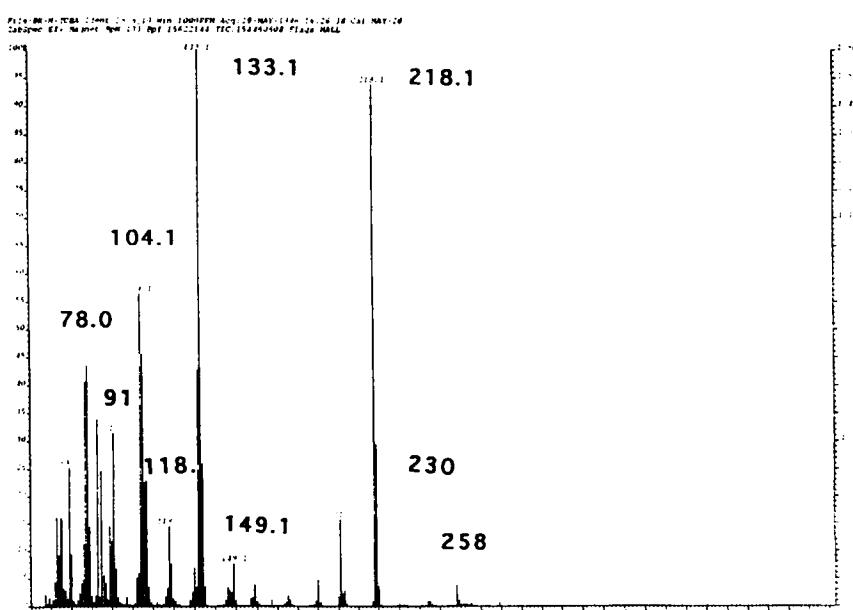



Fig.4. Mass spectrum of 1-(o-tolyl)barbituric acid.

Scheme 4. The molecular ions of the acetone adducts from 1 and 2.

as a further proof for the formation of the acetone adducts.

APPARATUS

Proton NMR spectra were recorded on a Bruker AC-200 (200 MHz, $T=23^\circ\text{C}$), or on a Varian T-60 A NMR (60 MHz, $T=23^\circ\text{C}$) spectrometers. Carbon-13 NMR spectra were recorded on a Bruker AC (200 MHz, $T=23^\circ\text{C}$). The mass spectra were recorded on a VG-ZABSPEC instrument (1000 resolution). Melting points were recorded using Electrothermal 9100 melting point apparatus.

ACKNOWLEDGMENTS

We thank to Bogaziçi University research fund for their support. (Project No: 96HB0517).

REFERENCES

1. Doğan İ., İçli S. Conformational and Spectral Investigations of Thiazolidinone Derivatives by ^1H and ^{13}C NMR Spectroscopy. *Spectrosc. Lett.* 1983; 166: 499-511.
2. Doğan İ., Bürgemeister T., İçli S., Mannschreck A. Synthesis and NMR Studies of Chiral 4-Oxazolidinones and Rhodanines. *Tetrahedron* 1992; 48: 7157-7164.
3. Doğan İ., Pustet N., Mannschreck A. The enantiomers of N-Aryl-2-thioxo-4-oxazolidinones and N-Aryl Rhodanines. Investigation by Liquid Chromatography, Circular Dichroism and Thermal Racemization. *Journal of Chemical Society Perkin Transactions 2* 1993; 1557-1560.
4. Oğuz F., Doğan İ. Manuscript in preparation.
5. All of the compounds except for 1-phenylbarbituric acid and 1-(*o*-chlorophenyl)barbituric acid were synthesized for the first time. Their synthesis and spectral data including ^1H NMR will be reported separately.
6. Oğuz F., M.S. Thesis. Synthesis and NMR Studies on Chiral 1-(*o*-Aryl)barbituric Acid Derivatives 1996.
7. The first synthesis of this compound was reported in Macbeth A., Nunan T.H., Trail D. Labile Nature of the Halogen Atom in Organic Compounds. XII. Halogen Compounds of Barbituric Acids. *Journal of Chemical Society* 1926; 1252.
8. The first synthesis of this compound was reported in Shoeb A., Popli S.P., Mukerjee S.K., and Dhar. Studies in Possible Oral Hypoglycemicagents. VI. Synthesis of Some 2- and 4-Pyridylethylureas and Thioureas and Some Barbiturates and Their Biological Activity. *Indian Journal of Chemistry* 1967; 54: 145-146.

9. The AB system observed at 200 MHz instrument was not observed at 60 MHz ^1H NMR instrument.

10. Kosugi H., Kato T., Kikugawa K. Formation of Yellow, Orange and Red Pigments in the Reaction of Alk-2-Enals with 2-Thiobarbituric Acid. *Analytical Biochemistry* 1987; 456-464.

Date Received: September 15, 1997

Date Accepted: November 4, 1997